

Dasar-Dasar Penginderaan Jauh:

KAJIAN LAHAN KERING DAN WILAYAH KEPULAUAN

Dr. Ir. DWI PRASETYO, S.Kom, M.Si.

Editor:

Dr. Ir. ALFRED O. M. DIMA, M.Si.

Dasar-Dasar Penginderaan Jauh: KAJIAN LAHAN KERING DAN WILAYAH KEPULAUAN

Penulis:

Dr. Ir. DWI PRASETYO, S.Kom, M.Si.

Editor:

Dr. Ir. ALFRED O. M. DIMA, M.Si.

Dasar-Dasar Penginderaan Jauh: KAJIAN LAHAN KERING DAN WILAYAH KEPULAUAN

Copyright © PT Penamuda Media, 2025

Penulis:

Dr. Ir. DWI PRASETYO, S.Kom, M.Si.

Editor:

Dr. Ir. ALFRED O. M. DIMA, M.Si.

ISBN:

Penyunting dan Penata Letak:

Tim PT Penamuda Media

Desain Sampul:

Tim PT Penamuda Media

Penerbit:

PT Penamuda Media

ISBN: 9786347269256

Redaksi:

Casa Sidoarum RT03 Ngentak, Sidoarum Godean Sleman Yogyakarta

Web: www.penamudamedia.com E-mail: penamudamedia@gmail.com

Instagram: @penamudamedia WhatsApp: +6285700592256

Cetakan Pertama, Juni 2025 x + 117 halaman; 15×23 cm

Hak cipta dilindungi undang-undang Dilarang memperbanyak maupun mengedarkan buku dalam bentuk dan dengan cara apapun tanpa izin tertulis dari penerbit maupun penulis

KATA PENGANTAR

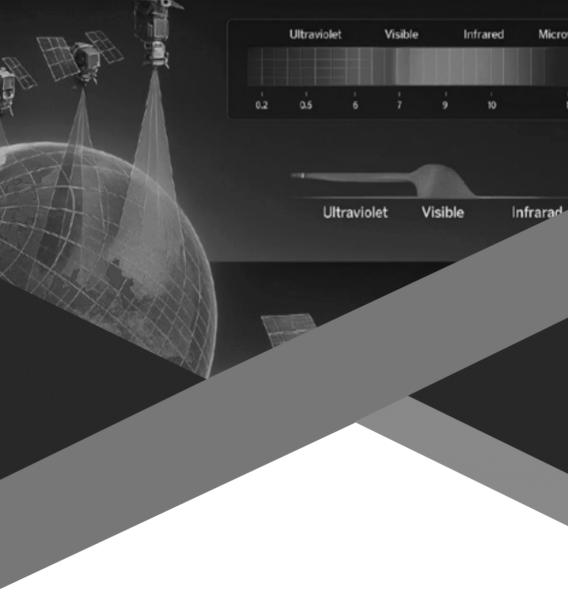
Segala puji syukur penulis panjatkan ke hadirat Tuhan yang maha Esa, atas rahmat dan karunia-Nya sehingga buku yang berjudul Pengantar Penginderaan Jauh ini dapat disusun dan diselesaikan dengan baik. Buku ini hadir sebagai bentuk tanggapan terhadap kebutuhan akademik dan profesional akan referensi yang komprehensif, sistematis, dan aplikatif dalam memahami serta mengimplementasikan teknologi penginderaan jauh.

Melalui buku ini, penulis berusaha menyajikan pemahaman konseptual dan teknis yang mendalam mulai dari prinsip dasar hingga aplikasi praktis penginderaan jauh. Pembahasan disusun agar sesuai dengan kebutuhan pembelajaran di tingkat perguruan tinggi serta sebagai panduan bagi para profesional muda yang berkecimpung dalam kajian sumber daya alam dan pemetaan wilayah.

Penulis menyadari bahwa penginderaan jauh merupakan ilmu yang terus berkembang, seiring kemajuan teknologi dan kebutuhan data spasial yang semakin kompleks. Oleh karena itu, buku ini tidak hanya menyampaikan teori, tetapi juga memberikan pemahaman tentang pentingnya resolusi, klasifikasi, serta analisis data citra dalam menunjang pengambilan keputusan berbasis spasial.

Akhir kata, penulis mengucapkan terima kasih kepada semua pihak yang telah memberikan dukungan dan masukan dalam penyusunan buku ini. Semoga buku ini bermanfaat dan menjadi amal jariyah dalam pengembangan ilmu pengetahuan di Indonesia. Amin.

Bogor, Februari 2025
Penulis


DAFTAR ISI

KATA PENGANTAR	iv
DAFTAR ISI	vii
BAB I PENDAHULUAN	1
1.1 Batasan dan Definisi Penginderaan Jauh	2
1.2 Sistem Penginderaan Jauh	6
1.3 Kerangka Kerja Penginderaan Jauh	17
1.4 Citra Digital	22
1.4.1 Citra Digital Penginderaan Jauh	22
1.4.2 Bagaimana Citra Penginderaan Jauh	
Diperoleh	23
1.4.3 Bagaimana Citra Penginderaan Jauh	
Disimpan	24
1.5 Spektrum Elektromagnetik dalam Penginderaan	
Jauh	26
1.6 Sensor Elektro-Optik untuk Penginderaan Jauh	29
1.7 Sistem Satelit Penginderaan Jauh	32
1.7.1 Berdasarkan Fungsi	33
1.7.2 Berdasarkan Orbit	33
1.7.3 Satelit Landsat	34
BAB II SISTEM PENGOLAHAN CITRA DIGITAL	38
2.1 Resolusi Spasial	39
2.2 Resolusi Spektral	41
2.3 Resolusi Radiometrik	45
2.4 Resolusi Temporal	46
2.5 Resolusi Layar	47
BAB III RESTORASI CITRA	49
3.1 Kualitas Citra	50

3.1.1 Pengaruh Atmosfer	50
3.1.2 Karakteristik Sensor	51
3.1.3 Pengaruh Geometrik	51
3.1.4 Waktu dan Kondisi Perekaman	51
3.2 Koreksi Citra	52
3.2.1 Koreksi Geometri Citra	52
3.2.2 Koreksi Radiometri Citra	55
BAB IV KLASIFIKASI MULTISPEKTRAL UNTUK CITRA	
SATELIT	58
4.1 Tujuan dan Prinsip Klasifikasi Citra	59
4.2 Pendekatan Klasifikasi	60
4.2.1 Klasifikasi Terselia (Supervised	
Classification)	61
4.2.2 Klasifikasi Tak Terselia (Unsupervised	
Classification)	62
4.3 Metode Klasifikasi Terselia yang Umum	
Digunakan	64
4.3.1 Minimum Distance to Mean	64
4.3.2 Parallelepiped Classifier	65
4.3.3 Maximum Likelihood Classifier (MLC)	67
4.3.4 Support Vector Machine (SVM)	69
4.3.5 Random Forest	70
4.4 Peningkatan Hasil Klasifikasi	70
4.4.1 Penggabungan Kelas (Merging)	71
4.4.2 Penyaringan Mayoritas (Majority Filterin	g)71
4.5 Evaluasi Akurasi Klasifikasi	71
4.5.1 Matriks Kesalahan (Confusion Matrix)	71
4.5.2 Uji Statistik	72
4.6 Tantangan dan Inovasi dalam Klasifikasi	72
4.7 Aplikasi Klasifikasi Citra	73

B	AB V TRANSFORMASI KHUSUS	75
	5.1 Komposit Saluran Warna (Color Composite)	77
	5.2 Transformasi Principal Component Analysis (PC	A)80
	5.3 Transformasi Indeks Vegetasi (Vegetation Index)82
	5.3.1 Konsep Indeks Vegetasi	82
	5.3.2 NDVI – Normalized Difference Vegetation	า
	Index	83
	5.3.3 Indeks Vegetasi Lainnya	84
	5.3.4 Aplikasi Indeks Vegetasi	85
	5.4 Transformasi Tasseled Cap	85
	5.4.1 Konsep	85
	5.4.2 Proses	86
	5.4.3 Interpretasi	86
	5.4.4 Kelebihan	87
	5.5 Transformasi Khusus Lainnya (Opsional)	87
	5.6 Penutup	88
В	AB VI SISTEM TERMAL	89
	6.1 Dasar Teori Radiasi Termal	90
	6.1.1 Radiasi Panas dan Emisi Energi	90
	6.1.2 Hukum Fisika yang Relevan	91
	6.1.3 Emisivitas (Emissivity)	93
	6.2 Sensor Termal	93
	6.3 Interpretasi Citra Termal	94
	6.4 Aplikasi Penginderaan Jauh Termal	95
	6.4.1 Perkotaan	96
	6.4.3 Kehutanan	96
	6.4.4 Geologi dan Vulkanologi	96
	6.4.5 Hidrologi dan Lingkungan	97
	6.5 Kelebihan dan Keterbatasan Sistem Termal	98
	6 6 Perkembangan Teknologi dan Inovasi	98

6.7 Penutup	99
BAB VII INTEGRASI PENGINDERAAN JAUH DAN SISTE	ΞM
INFORMASI GEOGRAFIS (GIS)	100
7.1 Penginderaan Jauh Sebagai Sumber Data	
untuk GIS	102
Keunggulan Penginderaan Jauh untuk GIS:	103
7.2 Proses Integrasi	104
7.2.1 Koreksi Geometri	106
7.2.2 Ekstraksi Informasi	106
7.2.3 Integrasi dengan Data GIS	107
7.3 Manfaat Integrasi Penginderaan Jauh dan GIS	107
DAFTAR PUSTAKA	111
Tentang Penulis	115

BAB I

PENDAHULUAN

1.1 Batasan dan Definisi Penginderaan Jauh

Menurut Lillesand dan Kiefer (2004), penginderaan jauh adalah ilmu sekaligus seni untuk mendapatkan informasi mengenai suatu objek atau fenomena tanpa melakukan kontak langsung dengan objek tersebut. Informasi ini diperoleh menggunakan sensor atau alat perekam yang biasanya dipasang pada balon udara, pesawat terbang, pesawat ulang-alik, atau satelit (Sutanto, 1994).

Sementara itu, Lindgren (1985) melalui Sutanto (1994) mendefinisikan penginderaan jauh sebagai teknik untuk mengumpulkan dan menganalisis data tentang permukaan Bumi, terutama berdasarkan radiasi elektromagnetik yang dipantulkan atau dipancarkan dari permukaan tersebut.

Penginderaan jauh tidak hanya mendeteksi permukaan Bumi saja, tetapi juga mampu mengamati objek di kedalaman tertentu, bahkan di

Dasar-Dasar Penginderaan Jauh:

KAJIAN LAHAN KERING DAN WILAYAH KEPULAUAN

Buku Dasar-Dasar Penginderaan Jauh: Kajian Lahan Kering dan Wilayah Kepulauan, merupakan karya ilmiah yang disusun sebagai referensi utama untuk mempelajari dan memahami konsep, prinsip, serta aplikasi teknologi penginderaan jauh dalam berbagai kajian geospasial. Buku ini membahas secara sistematis mulai dari dasar-dasar penginderaan jauh, komponen sistem, jenis-jenis citra dan foto udara, teknik analisis data (manual dan digital), hingga pemanfaatannya dalam studi fenomena geografi fisik maupun manusia.

Dengan pendekatan yang komprehensif dan terstruktur, buku ini menyajikan materi secara mendalam meliputi: resolusi citra satelit, penglihatan stereoskopik, sistem penginderaan termal dan radar, serta pemanfaatan citra untuk pemetaan dan manajemen lingkungan. Materi ini sangat relevan bagi mahasiswa, dosen, peneliti, serta praktisi yang berkecimpung dalam bidang geografi, lingkungan, kehutanan, dan perencanaan wilayah.

Disusun dengan gaya bahasa yang komunikatif dan berbasis pada referensi ilmiah terkini, buku ini juga mengajak pembaca untuk memahami pentingnya peran penginderaan jauh dalam era digital dan pemantauan lingkungan modern. Pengetahuan yang disajikan tidak hanya bersifat teoritis, tetapi juga aplikatif, sehingga dapat langsung diterapkan dalam pengolahan dan interpretasi data spasial di berbagai sektor pembangunan.

Dengan cakupan topik yang luas dan penyajian yang terstruktur, buku ini diharapkan dapat menjadi rujukan penting dalam pembelajaran mata kuliah penginderaan jauh serta memperkaya literatur nasional di bidang geospasial. Lebih dari itu, buku ini juga membuka cakrawala pembaca terhadap pemanfaatan teknologi penginderaan jauh sebagai solusi inovatif dalam menghadapi tantangan lingkungan dan perencanaan sumber daya yang berkelanjutan.

